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Imitation learning is the study of algorithms that attempt to improve
performance by mimicking a teacher’s decisions and behaviors. Such
techniques promise to enable effective “programming by demonstra-
tion” to automate tasks, such as driving, that people can demonstrate
but find difficult to hand program. This work represents a summary
from a very personal perspective of research on computationally ef-
fective methods for learning to imitate behavior. I intend it to serve
two audiences: to engage machine learning experts in the challenges of
imitation learning and the interesting theoretical and practical distinc-
tions with more familiar frameworks like statistical supervised learning
theory; and equally, to make the frameworks and tools available for
imitation learning more broadly appreciated by roboticists and experts
in applied artificial intelligence.

Introduction

Imitation learning is the study of algorithms that improve perfor-
mance in making decisions by observing demonstrations from a
teacher. Consider, for instance, Figure 1, which shows a human ex-
pert tele-operating a walking robot by commanding its footstep mo-
tions. Such motions and the decisions behind them are complex and
difficult to encode in simple, manually programmed rules. While
demonstrating a desired behavior may be easy, designing a system
that behaves this way is often difficult, time consuming, and ulti-
mately expensive. Machine learning promises to enable “program-
ming by demonstration” for developing high-performance robotic
systems.

Learning Behavior Without Generalization

Many of the references in imitation learning focus on learning fixed
trajectories, or on controllers to achieve such trajectories in the pres-
ence of disturbances. (See a detailed discussion in [Argall et al.,
2009].) Such work – including the foundational [Atkeson and Schaal,
1997] and the stunning helicopter acrobatics of [Coates et al., 2009] –
vividly dramatizes the remarkable power of human demonstration.
However, these approaches are limited in their ability to generalize to
new circumstances. Our focus here is on strategies that can general-
ize to unfamiliar settings and base decisions on perceptual feedback.
It is important to appreciate, however, that the boundary between
trajectory learning approaches and general imitation learning is not
clear. Atkeson [Atkeson and Morimoto, 2003], and others, notably
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Figure 1: Human expert demonstra-
tion to train a walking robot to cross
very rough terrain. Learning to Search
(LEARCH) [Zucker et al., 2011, Ratliff,
2009] attempts to make a footstep plan-
ner mimic the human pilot’s choices.
Imitation learning is the study of algo-
rithms that improve decision making
through data collected by observing an
expert – often, but not always a person
who can accomplish a task that is hard
to hand-program.

[Safonova and Hodgins, 2007, Mülling et al., 2013], show that a li-
brary of trajectories can indeed be made to generalize very broadly
through clever arbitration and blending.

Imitation 6= Supervised Learning – The Distinctions

Unfortunately, many approaches that utilize the classical tools of
supervised learning fail to meet the needs of imitation learning.
We must address two critical departures from classical supervised
learning to enable effective imitation learning.

Perhaps foremost, classical supervised machine learning exists
in a vacuum. Predictions made by these algorithms are explicitly
assumed to have no effect on the world in which they operate. We
will consider the problems that result from ignoring the effect of
actions that influence the world and highlight simple “reduction-
based” approaches that mitigate these problems both in theory and
in practice.

Second, robotic systems are typically built atop sophisticated plan-
ning algorithms that efficiently reason far into the future. Ignoring
these planning algorithms in lieu of a reactive learning approach of-
ten leads to poor, myopic performance. While planners have demon-
strated dramatic success in applications ranging from legged loco-
motion to outdoor unstructured navigation, such algorithms rely
on fully specified cost functions that map sensor readings and en-
vironment models to a scalar cost. These cost functions are usually
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manually designed and hand programmed, which is difficult and
time-consuming. Recently, a set of techniques for learning these func-
tions from human demonstration by applying an Inverse Optimal
Control (IOC) approach to find a cost function for which planned be-
havior mimics an expert’s demonstration have been shown to be ef-
fective and efficient. These approaches shed new light on the intimate
connections between probabilistic inference and optimal control. 1 1 I prefer the older, more widely used,

terminology Inverse Optimal Control
as opposed to Inverse Reinforcement
Learning (IRL) throughout. The central
premise of research in inverse optimal
control approaches to imitation learning
is that the policy to be learned by
demonstration can be thought of as
a near-optimal policy for some plant
with an unknown reward function. In
Reinforcement Learning, by contrast,
the plant itself is viewed as unknown.
Thus we are typically solving the
inverse problem of optimal control,
but not of the inverse of reinforcement
learning, rendering the phrasing IRL
somewhat misleading. Moreover, it’s
valuable to connect to the original
literature in control theory dating
back to Kalman’s [Kalman, 1964]
foundational work.

These two points are taken up in turn in the next two major sec-
tions.

Audience

This work presents the core distinctions between classical supervised
learning and imitation learning. I present this work in a personal
context, noting the practical and theoretical differences that arose
in implementing real systems that learn from demonstration. My
goals for this effort are two-fold. I’d like to engage researchers in
machine learning to consider fundamental – and practically relevant
– problems in imitation. I’d also like to persuade those interested in
the practice of robot learning, game AI, and other areas of computer
science that imitation learning is likely to be a better foundation for
such work then classical supervised learning techniques. This work
is by no means exhaustive nor is it meant to serve as a summary of
the outstanding work in the field; the interested reader would be
well served by the survey[Argall et al., 2009]. Instead, it is meant to
summarize lessons I’ve learned, particularly in close collaboration
with others in robotics and learning, on the problem of imitation
learning.

Cascading Errors and Imitation Learning

Dean Pomerleau’s work [Pomerleau, 1989] on learning autonomous
driving is the seminal work in the field of imitation learning. More-
over, it gets right to the heart of the differences between imitation
learning and classical supervised learning. Figure 2 demonstrates the
setup of Pomerleau’s experiments on learning to drive the NavLab

vehicle by using a neural network to map camera images to steering
angles. Pomerleau developed this procedure by driving the car and
collecting pairs of coarse camera images and steering angles. He then
trained a simple neural network in real time to take new images and
predict the resulting steering angle. 2 2 The Pomerleau works truly hold up

for today’s reader both for their impact
on autonomous vehicles and their deep
insight into the key differences between
supervised and imitation learning.

Consider a smaller, simplified version of the problem – learning
to drive a car in a video game by performing a direct mapping from
screen shots to steering angles. Figure 4 illustrates the classic super-
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Figure 2: Pomerleau’s Autonomous
Land Vehicle in a Neural Network
system at work driving the Carnegie
Mellon NavLab vehicle. Used with
permission.

vised learning approach to learning such a mapping. 3 3 Stephane Ross’s results [Ross et al.,
2011b, Ross, 2010a,b] applying such a
procedure using linear regression on a
simplified version of the screen image
can be seen at Supervised Tux.

Unfortunately, in this instance – as is quite common in practice
– the approach fails disastrously and the learned controller quickly
drives off the road. Let’s consider what can go wrong. Of course, the
learning problem may simply be too difficult. Perhaps we simply
can’t find a classifier or regressor that predicts the driver’s steering
decisions with small error. Perhaps a linear predictor is a bad choice
for this problem; a richer hypothesis class might be more useful. That
turns out not to be the case – a linear predictor is perfectly adequate
for the task.

We could simply be overfitting – perhaps our training data set is
too small to produce a good solution, which can lead to poor test
performance. Avoiding overfitting has long been one of the central
concerns in the study of learning theory[Shalev-Shwartz and Ben-
David, 2014]. However, hold-out errors 4 are quite close to training 4 One can measure and control overfit-

ting by considering the performance
of a learned predictor on data that is
“held-out”: that is, data not available
to the learning algorithm to train its
predictor.

errors in this example. Moreover, the learned policy5 fails to perform

5 We use policy here to refer to any
learned predictor that maps features
to actions. For discrete actions, this is
simply a classifier. The terminology is
common to optimal control and rein-
forcement learning, but is sometimes
off-putting for roboticists and experts in
supervised learning.

well even with a very large set of training data.

What goes wrong? In a nutshell, learning errors cascade in imitation
learning but are independent in supervised learning. Consider, for
instance, a discrete version of the problem that only predicts “steer
left” or “steer right”. Inevitably, our learning algorithm will make
some error – let’s say with small probability ε for a good learner –
and steer differently than a human driver would. At that point, the
car will no longer be driving down the center of the road and the re-
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Figure 3: A schematic of Pomerleau’s
ALVINN driving system. The approach
used a small neural network to map
coarse camera images into a disretized
set of steering angles. Image used with
permission.

Figure 4: A sketch of the problem
of learning to drive a video game
simulation. A person drives the car
around the course and collects data.
That dataset consisting of images and
associated steering angles is fed to a
classic supervised learning algorithm,
e.g., linear regression. The resulting
policy π is used to drive the vehicle.
Hilarity ensues.

sulting images will look qualitatively different then the bulk of those
used for training. Imitation learning has difficulty with this situation.
The learner has never encountered these images before. Since learn-
ers can only attempt to do well in expectation over a distribution of
familiar examples, an unusual image may incur further error, often
with a higher probability.

As a result, the controller driving the simulation will steer the car
close to the edge of the road – a very rare occurrence in training –
and the resulting decision will likely be quite poor. Often, the learned
controller will drive off the road, failing completely at the task. 6 6 Pomerleau’s techniques for addressing

these issues are particularly instructive.
These include synthetic data genera-
tion, the use of online learning, and
the emphasis on hard examples. This
approach effectively manages covariate
shifts similar to those caused when a
learner influences its own test distribu-
tion. [Bagnell, 2005].

More formally, we can consider an imitation learning problem of T
sequential decisions [Ross et al., 2011a]. If we learn a classifier mak-
ing ε errors in predicting a driver’s decisions in expectation over the
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distribution of examples induced by the teacher, we would hope to
make Tε mistakes over the sequence of decisions. Unfortunately, an
early error may compound into a long sequence of mistakes. As a
result, the best we can hope for is O(T2ε) mistakes[Ross and Bagnell,
2010]. 7 From a statistical point of view, our training and test data 7 It’s simplest to imagine a fixed time

horizon. This fixed T can be replaced
in analysis by notions of mixing time,
discount factor, or a notion of how
long any one mistake can propagate.
It’s therefore useful to consider T as
representing an appropriate notion
of the effective time horizon of the
problem, not the actual number of
decisions to be made.

sets are not drawn from the same distribution and thus the super-
vised learning assumption of independent and identically distributed
(i.i.d.) data is badly violated.

A natural suggestion for solving this problem is to collect data for
all possible road conditions or over all images we may see. Unfor-
tunately, it’s difficult to obtain data for all possible inputs – the set
of potential images is very large. Worse, no learner in our hypothe-
sis class may be capable of handling all possible inputs. Assuming
realizability – the “true” target function in our class– is generally far
too strict, and algorithms that require this generally perform poorly.
[Shalev-Shwartz and Ben-David, 2014] Instead, in machine learning
we hope that there is a function in our hypothesis class that can work
well on average over the actual distribution of training data that we
encounter. 8 8 This point represents a general tension

between the techniques of analysis in
decision making and control – where
one [Ljung, 1978] often requires a
model or a controller to be uniformly
good for all possible inputs, versus
the paradigm of learning and statistics
where it is recognized that this is not
possible in high dimensional problems.
In control, the focus is on ensuring
good expected or average performance
over the distribution of examples that
actually occur. This mismatch lies at
the heart of many of the difficulties of
marrying learning and control. The
interactive method discussed here –
and no-regret learning in general –
may serve as the bridge between these
approaches.

A Simple Fix

If training data is plentiful and the time horizon is fixed and short,
the compounding of errors is easily addressed. To proceed, we
can train a policy for each of the T steps. The first policy is simply
trained in normal supervised learning fashion by collecting data: the
camera image and the person’s steering angle at the initial decision.
We train the next policy by executing the initially learned policy for
the first time step, then turning over the wheel to the teacher. A new
data set is collected for the second time step, consisting of the input
images seen by the teacher at time 2, and the resulting steering de-
cisions. A policy can then be learned for time step 2 via the usual
machinery of supervised learning. We can easily repeat this pro-
cess to train the k-th step in a time-varying policy by observing the
teacher’s decisions after running the first k − 1 steps of the learned
policy [Ross and Bagnell, 2010].

It follows that each policy learned is being tested in exactly the
way it was trained. The policy encounters the same distribution of
input examples– albeit not the same actual examples! If an earlier
policy makes errors, later ones can learn to recover from them by
mimicking the teacher’s recovery strategy. This halts error com-
pounding and achieves the error rate Tε that one would expect in
standard supervised learning.
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A practical solution: DAGGer

Figure 5: Illustration of the Dataset
Aggregration (DAGGer) approach
to imitation learning via repeated
interaction. At each iteration of the
algorithm, the current learned policy
is executed. Throughout execution,
the teacher “corrects” each step – that
is, provides a preferred steering angle
that is recorded in a new data set
but not executed. Throughout these
iterations, data is aggregated together
to lead to the next policy. This provides
much stronger guarantees than simple
supervised learning.

While the above approach cleanly addresses the problem of de-
cisions affecting the input distribution in imitation learning, it is
impractical for imitation learning problems like the video game driv-
ing problem. We simply can’t afford to train a policy for every step
in a long sequence of decisions like driving a vehicle. Moreover, this
process should be unnecessary if the effective time horizon is shorter.

A solution to this problem relies on interaction: interleaving exe-
cution and learning. In particular, at each iteration of the algorithm,
the current learned policy is executed. Throughout execution, the
teacher “corrects” the solution – that is, provides a preferred steer-
ing angle that is recorded in a new data set but not executed. After
sufficient data is collected, it is aggregated together with all of the
data that was previously collected. A supervised learning algorithm
then generates a new policy by attempting to optimize performance
on the aggregated data. This process of execution of the current pol-
icy, correction by the teacher, and data aggregation and training is
repeated.

1 # Take an i n i t i a l po l i cy : π0 , Teacher : s t a t e −> act ion ,
2 # Learner : [ ( s t a t e , a c t i o n ) ] −> pol icy , GenSystemTrajectory : π −> [ s t a t e ]
3 def DAGGER( π0 , Teacher , GenSystemTrajectory , Learn ) :
4 D = [ ] , π = π0
5 f o r i in range (N) : # run f o r N i t e r a t i o n s
6 Di = [ ( s t a t e , Teacher ( s t a t e ) ) f o r s t a t e in GenSystemTrajectory ( π ) ]
7 D. append ( Di )
8 π = Learn (D) # Optional ly run any no−r e g r e t l e a r n e r on the Di
9 re turn π

10 # Pre fer red : ins tead return the s t o c h a s t i c po l i cy t h a t mixes uniformly between a l l the
11 # p o l i c i e s learned or choose the bes t s i n g l e po l i cy on v a l i d a t i o n over the i t e r a t i o n s

DAGGer Algorithm Pseudo-code

Intuitively, this approach creates policies that are capable of cor-
recting their own mistakes. If the learner steers too close to the edge
of the road, the policy will generate new training data that includes
the teacher’s preferred actions for handling such situations. The
aggregation of data prevents it from forgetting previously-learned
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situations.
But what can one say formally about this approach? If our super-

vised learner is one of a large class of learners that have the no-regret
property[Cesa-Bianchi et al., 1997], we can formalize the idea that
learning a policy with low training error implies good performance
at imitating the expert. Put differently, one of two things must hap-
pen: either the supervised learning problem will become too hard
to solve (expected error greater then ε) or a policy that matches the
teacher with only approximately Tε error over the full horizon will
be learned throughout the iterations. 9 9 It need not, however, be the final

policy learned. Instead, the claim is
merely that one of the policies– or a
uniform stochastic mixture of the entire
set learned– must perform well. In
practice, choosing the final learned
policy is often simplest and sufficient.

Stability, Online Learning and “No-regret”

Case Study: DAGGer in Anger

When we apply this approach of teacher correction, aggregating data
and iteratively learning policies to the car driving problem, the result
is somewhat boring to watch. While simple supervised learning
averages about 3-4 failures per lap, the interactive DAGGer learning
approach with the same number of examples from the teacher
very quickly reaches nearly 0 falls per lap. No amount of training
data enables the supervised learning approach to achieve that same
performance– it always falls multiple times per lap.

It’s more interesting to consider learning a complex, real-world
reactive control task like flying through a cluttered domain – for
example, between tree trunks underneath a forest canopy. 10 The 10 The “Forest of Endor” problem, to

use Nick Roy’s evocative phrase.problem follows the setup of Pomerleau’s: compute features (optical
flow, color histograms, simple texture features etc.), pool them over
patches of the images, and provide the resulting large feature vector
as an input to a regression algorithm. As output, the learner will
predict the commanded lateral velocity of a human pilot and train
the algorithm to reactively map these image features to controls.

The result is a simple controller that navigates through dense
forest at nearly the same effectiveness as a human pilot. [Ross et al.,
2013a] 11. Interestingly, failures largely come about due to the nature 11 Videos of the approach can be found

at LAIRLab BIRD Website [Ross et al.,
2013b]

of a reactive controller and a small field of view. It’s not unusual for
the algorithm to dodge a tree, have that tree leave its field of view,
then crash into the same tree sideways as it tries to avoid a new tree.
Adding memory – whether through intelligently constructed features
or through predictive state representations – represents the best hope
for improving the learning of such control strategies.

Recently other authors have demonstrated in success in applying
DAGGer to a rich class of problems including playing a broad class
of Atari 2600 games [Guo et al., 2014] and robot navigation [Kim
et al., 2013].
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Learning with a Goal Besides Imitation I focused entirely above on
a loss function of simple imitation: our goal is to choose the same
actions as the expert measured according to some loss function
l(y, π(x)). But in many scenarios – for instance, driving – our real
goal is actually substantially different. We may wish to minimize the
probability of crashing, or maximize our success at manipulating an
object, or achieve any other control objective that the teacher is pre-
sumably optimizing. The same style of approach is easily adopted –
albeit with potentially substantially higher computational and sample
complexity – for this setting by replacing the data about best action
with an estimate of cost-to-go from the teacher. [Ross and Bagnell,
2014] Crudely speaking, this cost-to-go is an estimate of how hard it
will be for the teacher to recover if the learner were to make a mis-
take. The key question of what to do when a teacher can’t articulate
their own cost function is taken up in the next section.

Summary

In an important sense, recent theory and algorithms for imitation
learning formalize a simple lesson: one cannot learn to drive a car
simply by watching someone else do it. Instead, feedback is essen-
tial – we must try to drive and receive instruction that corrects our
mistakes.

Crucially, this general approach is largely agnostic to the under-
lying supervised learning approach. It is an interactive reduction to
supervised learning methods. Formal results are only known for
settings (like kernel machines, Gaussian processes, and linear predic-
tors) where no-regret algorithms are known. But empirical evidence
suggests that this approach is remarkably effective even when this
condition doesn’t formally hold, since many learning algorithms are
actually both stable and good predictors.

Finally, it is important to note that all discussion here centered on
learning mappings directly from observations to controls without
considering state-estimators (e.g. filters.) However, there is no reason
one can not nor should not learn to imitate in belief space– that is learn
mapping from the output of a filter (e.g. a best estimate of the un-
derlying world state) to decisions. In practice, this is almost certainly
necessary to achieve high performance; such approaches fall under
the same general approach described here as we can consider the fil-
ter as simply a part of the environment and the filter output as a new,
generalized observation.
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Figure 6: An image of the DARPA
UPI “Crusher” robot autonomously
crossing rough off-road terrain. It
is difficult to manually engineer the
connection between perception and
planning. Imitation learning techniques
make it possible to automate this
process. Further examples of the
vehicle traversing rough terrain from
temperate woodlands, to marshes, to
dense vegetation, to mock-up urban
environments all under autonomous
control can be seen here and here.

Decisions are Purposeful: Inverse Optimal Control

Imitation learning is fundamentally different then classical super-
vised learning in another sense. For instance, consider the problem
of navigating through very rough outdoor terrain – a major focus
of robotics research for decades. Figure 6 shows Crusher, an au-
tonomous robot that was developed as part of a DARPA fundamental
research project into outdoor robotics. Crusher traversed thousands
of kilometers of diverse, rough, terrain with minimal human inter-
vention over years of field testing. In contrast to many other outdoor
navigation efforts, it typically travelled from 0.5 to 10 kilometers
between human provided waypoints. All decisions along the way
were made based on information from its own perception system
and (optionally) overhead maps (e.g. images collected from mapping
companies like those used in Google Maps).

A reactive controller is unlikely to make any meaningful progress
towards a goal in this domain; it is difficult to imagine training a
simple supervised learning method to accomplish this complex task.
The robot must instead execute a long, coherent sequence of decisions
in order to achieve its goal. This requires a sense of planning – and
of replanning as new perceptual information becomes available – to
achieve good performance.

To adapt to imitation learning to this setting, it is valuable to con-
sider the architectures that roboticists have created to achieve intelli-
gent and deliberative navigation. Since the pioneering projects in off-
road navigation [Hebert, 1997], effective robot navigation has relied
on an optimal control or replanning architecture to structure decision
making. This architecture has been replicated and refined throughout
the field of robotics [Zucker et al., 2011, Urmson et al., 2008, Welling-
ton and Stentz, 2004, Leonard et al., 2008, Jackel et al., 2006, Bachrach
et al., 2009] and is currently used in the most advanced autonomous
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navigation systems.

Figure 7: Components of a robot archi-
tecture: Sensors (LADAR, cameras) feed
a perception system that computes a
rich set of features (left side) developed
in the computer vision and robotics
fields. Depicted features include esti-
mates of color and texture, estimated
depth, and shape descriptors of a
LADAR point cloud. Features that are
not depicted here include estimates of
terrain slope, semantic labels (“rock”),
and other feature descriptors that can
be assigned a location in a 2D grid
map. These features are then massaged
into an estimate of “traversability” – a
scalar value that indicates how difficult
it is for the robot to travel across the
location on the map.

Figure 7 shows a diagram of such a robot architecture. Sensors
(LADAR, cameras) feed a perception system that computes a rich set
of features (left side) developed in the computer vision and robotics
fields. Features that are shown in Figure 7 include color, texture,
estimated depth, and shape descriptors of a LADAR point cloud.
Features that aren’t shown in the diagram include estimates of terrain
slope, presence of semantic categories (“rock”), and many other
feature descriptors that can be assigned a location in a 2D grid map.
These features are then massaged into an estimate of “traversability”
– a single scalar value that that indicates how difficult it is for the
robot to travel across the location on the map. This value is included
in a “cost map” for each state of the robot. The final decisions of the
robot represent steps along a minimum cost plan from the robot’s
current location to a goal state. The robot executes a small part of the
current plan at each time instant. As the robot moves, the perception
system provides updates about the terrain it is crossing. The cost
map is then updated with new traversibility values and a new plan is
generated.

Real implementations, of course, have much richer spaces of states
then simply a discretization of geometric locations of the robot center.
Almost inevitably, they contain a hierarchy of planning layers that
capture a state-space description of the robot at higher and higher fi-
delities as they consider shorter time-scales. [Zucker et al., 2011] The
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diagram in Figure 7 nevertheless captures the essential behavior of
many such systems and is often exactly the behavior of the coarsest
levels of such a hierarchy.

From the point of view of this architecture, only one role exists for
imitation learning. Perception computes features that describe the
environment; the output control is always the prefix of the currently
believed-to-be-optimal plan. The learning algorithm then must trans-
form the perceptual description (a feature vector) of each state into
a scalar cost value that the robot’s planner uses to compute optimal
trajectories.

Perhaps surprisingly, costing is one of the most difficult tasks in
autonomous navigation. As documented in [Silver, 2010], this single
piece of code required the largest number of changes and demanded
the most engineering effort. The entire behavior of the robot depends
on this module working correctly. Moreover, nearly all changes to
the software end up requiring either validation or modification of the
costing infrastructure. If a sensor changes or the perception system
develops or refines features, the costing mechanism must be updated.
If the planner changes – for instance by C-space expanding obstacles–
the costing system must change. Tuning and validating such changes
demands a tremendous amount of time and effort.

However, the robot can use imitation to learn this cost-function
mapping. A teacher (that is, a human expert driver) drives the robot
between waypoints through a representative stretch of complex ter-
rain. We can then set up a problem of Inverse Optimal Control: that is,
we attempt to find a cost function that maps perception features to a
scalar cost signal so that the teacher’s driving pattern appears to be
optimal.

Nathan Ratliff and I formulated the problem of learning such a
cost function as an application of structured prediction and demon-
strated that very simple sub-gradient based algorithms are remark-
ably effective at solving it. 12 12 In fact, surprisingly we showed that

such sub-gradient methods are actually
the best known algorithms for solving
large support vector machine and more
general structured margin problems
in a follow-on paper. These techniques
are now the de facto standard and have
been implemented in a wide range of
libraries [Agarwal et al., 2014].

Inverse Optimal Control (IOC) is a rich and fascinating subject
that dates back to Kalman’s work on the Linear-Quadratic-Regulator
problem. Kalman [Kalman, 1964] asked (and answered) a natural
question: given a linear controller or policy, is there a cost function
that makes it optimal for a given Single-Input Single-Output plant?13

13 Amusingly, while Kalman’s work
was critical in advancing the use of
state-space techniques for control, his
solution to the IOC problem was rooted
fundamentally in frequency domain
techniques.

Boyd [Boyd et al., 1994] provided a simple convex programming for-
mulation for the multi-input, multi-output linear-quadratic problem.

Only recently, however, has Inverse Optimal Control become an
engineering tool for designing intelligent systems. The recent work in
the machine learning on this area [Ng and Russell, 2000, Abbeel and
Ng, 2004, Ratliff et al., 2009b, Ziebart et al., 2008a, 2010] can be sum-
marized as providing several advances over the early contributions:
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Figure 8: Iterations of the LEARCH
algorithm. See the main text for a
description of how this algorithm
modifies its estimate of a cost function
by mapping features of a state to a
scalar traversability score.

Figure 9: A demonstration of the Learn-
ing to Search (LEARCH) algorithm
applied to provide automated interpre-
tation in traversability cost (Bottom)
of satellite imagery (Top) for use in
outdoor navigation. Brighter pixels
indicate a higher traversability cost on
a logarithmic scale. From left to right
illustrates progression of the algorithm,
where we see the current optimal plan
(green) progressively captures more of
the demonstration (red) correctly.

(1) Enabling a cost function to be derived (at least in principle)
for essentially arbitrary stochastic control problems using convex
optimization techniques – any problem that can be formulated as a
Markov Decision Problem.

(2) Requiring a weak notion of access to the purported optimal
controller. No closed form description of the controller needs to exist,
just access to example demonstrations.

(3) Statistical guarantees on the number of samples required to
achieve good predictive performance and even stronger results in the
online or no-regret setting that requires no probabilistic assumptions
at all.

(4) Robustness to imperfect or near-optimal behavior and gener-
alizations to probabilistically predict the behavior of such approxi-
mately optimal agents.

(5) Some algorithms further require only access to an oracle that
can solve the optimal control problem with a proposed cost function
a modest number of times to address the inverse problem.

The central premise of IOC techniques for imitation learning is
that structuring a space of policies as approximately optimal solu-
tions to a control problem is a representation that enables effective
deliberative action. Moreover, IOC methods rely on the observation
that cost functions generalize more broadly [Ng and Russell, 2000]
then policies or value functions. Thus, one should seek to learn and
then plan with cost functions when possible, and revert to directly
learning values or policies only when it is too computationally diffi-
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cult.

The Learning To Search (LEARCH) Algorithm. The key algorithmic
ideas for modern IOC algorithms statistical guarantees can be un-
derstood in the framework of convex optimization of an objective
function that stands as a surrogate for correctly predicting the plan
or policy that the teacher will follow. As such, many of the original
approaches were formulated in terms of large quadratic programs
[Ratliff et al., 2006b] or Linear-Matrix Inequalities [Boyd et al., 1994]
and the resulting algorithms are somewhat opaque. However, more
recent algorithms designed for solving large scale and non-linear
problems are quite natural and might be guessed without even ap-
preciating they are solving a well-defined optimization problem.

Consider, for instance, the Learning to Search (LEARCH) approach
of [Ratliff et al., 2009b] in the context of rough-terrain outdoor nav-
igation discussed above. We may step through the algorithm on a
cartoon example to see why it might work. We first consider a path
driven by teacher from a start point to a goal point, then imagine a
simple planning problem on a discretized grid of states that the robot
can occupy. Every iteration of the algorithm consists of the following:
(a) computing the current best optimal plan/policy; (b) identifying
where the plan and teacher disagree and creating a data set con-
sisting of features and the direction in which we should modify the
costs; (c) using a supervised learning algorithm to turn that data set
into a simple predictor of the direction to modify costs; and (d) com-
puting a cost function as a (weighted) sum of the learned predictors.

1 # Take a sequence of MDPS and demonstrations [Mi , ξi )]
N
i=1 where MDP M i s a s t o c h a s t i c planning problems

c o n s i s t i n g of s t a t e s , ac t ions , and a t r a n s i t i o n funct ion used f o r planning ,
2 # ( opt iona l ) l o s s f u n c t i o n s li : s t a t e , ac t ion−>R t h a t measures d e v ia t i o n s from the demonstrated plan ,

3 # f e a t u r e funct ion f : s t a t e , a c t i o n −> Rd t h a t d e s c r i b e s s t a t e s in terms of f e a t u r e s meaningful f o r
c o s t

4

5 def LEARCH({(Mi , ξi )}
N
i=1 , f , {li}

N
i=1 = 0 ) :

6 s0 = 0 # I n i t i a l i z e ( log )−c o s t funct ion , s0 : Rd → R to zero
7 f o r t in range ( T ) : # run f o r T i t e r a t i o n s
8 D = [ ] # I n i t i a l i z e the data s e t to empty
9 f o r i in range (N) : # f o r each example in the data s e t

10 cl
i = est (Fi ) − lTi # Compute costmap with opt iona l l o s s augmentation

11 µ∗i = Plan (Mi , ci ) # f ind the r e s u l t i n g optimal plan µ∗i = argminµ cl
i µ , µ c o n s i s t e n t with Mi

12 # µ∗ ’ s counts the time spent in s t a t e / a c t i o n s p a i r s under the plan−−
13 # f o r d e t e r m i n i s t i c MDPS t h i s i s simply an i n d i c a t o r of whether the optimal plan
14 # v i s i t s t h a t edge in the planning graph
15 µi = [ ξi . count ( ( s , a ) ) f o r ( s , a ) in Mi ] #compute s t a t e s−a c t i o n s in demonstration
16 # Generate p o s i t i v e and negat ive t r a i n i n g examples :
17 Di = [ ( fi (s, a) , s ign ( µ∗i

sa − µi
sa ) , |µ∗i

sa − µi
sa | ) f o r ( s , a ) in Mi ]

18 # i f |µ∗i
sa − µi

sa | = 0 f o r a s t a t e−a c t i o n we can simply not generate t h a t point

19 D. append ( Di )

20 ht = Learn (D) # Train a r e g r e s s o r ( or c l a s s i f i e r ) ht : Rd−>R on the r e s u l t i n g weighted data s e t
21 st+1 = st + αt ht # Update the ( log ) hypothesis c o s t funct ion
22 re turn exp (sT )

LEARCH Algorithm Pseudo-code

Concretely, we initialize the algorithm by guessing at a cost func-
tion: for instance, by assuming a constant cost everywhere. If we
run a minimum cost planner like A∗, the resulting “guess” of a cor-
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rect path is simply the straight line from the start to goal, which (of
course) is wrong. We can identify where the path agrees and dis-
agrees with a demonstration by a teacher of the correct path. Places
where the current plan and the demonstration both visit are clearly
traversible, so we do nothing to modify their cost. Places where the
current plan visits but the demonstration doesn’t are likely to be
more difficult to traverse (since the teacher avoids them), so we raise
their cost to discourage the planner from visiting those states. We
create a data-point that contains the features that describe the state
(shown in Figure 8 as a bush; in practice, it would consist of features
that might describe texture, or point cloud shape at a geometric lo-
cation) and assign it a target value of +1. On the other hand, places
where the demonstration visits but the current plan does not are
likely to be easier to traverse (since the teacher visits them), so we
lower their cost. We create a data-point that contains the features that
describe the state (shown in Figure 8 as grass) and assign it a target
value of −1.

The same procedure is run for locations of disagreement across
multiple trajectories (that is multiple planning problems). The result-
ing data set is then handed to a supervised learning algorithm (linear
regression, Support Vector machines, a neural network) that produces
a new predictor which maps features to a scalar traversibility value.

At the next iteration, the proposed cost function is simply the
old cost function added to the new predictor. This procedure won’t
converge in one iteration– in fact, in Figure 8 it runs over a rock!
However, multiple iterations (Figure 9 can be shown to be a gradient
boosting approach [Mason et al., 1999] to descending a convex loss
function that upper bounds imitation loss.14 15 14 Details can be found in [Ratliff et al.,

2009b] and in an earlier form in [Ratliff
et al., 2006a]. A provably convergent
variant that correctly manages non-
differentiability of the loss function was
given by [Grubb and Bagnell].
15 Example videos of the approach run-
ning can be found at LearningToSearch
and Rough Terrain Navigation.

Theory and Guarantees. At its heart, the problem of correctly identi-
fying a teacher’s reward function is ill-posed. First, it is unreasonable
to believe the teacher is truly an optimal controller for some simple
Markov Decision Process that describes the world. Second, given a
single behavior, there are generally infinitely many reward functions
that lead to the same behavior and are thus unidentifiable. [Abbeel
and Ng, 2004]

There are thus two commonly used notions of successful IOC used
in machine learning. The first (originated by Abbeel and Ng [Abbeel
and Ng, 2004]) considers a class of reward functions that are linear
in a set of features that describe states. Our goal then is to ensure
that whatever behavior is learned by imitation achieves the same re-
ward as the teacher even when the reward function itself cannot be
identified. The second (typified by Maximum Margin Planning [Ratliff
et al., 2006b, 2009b]) is agnostic to whether the teacher is actually an
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optimal controller or even cares about a reward function. Instead,
it quantifies a notion of successful imitation – for instance, agree-
ment with the trajectory taken by the teacher – and then attempts to
optimize that notion of agreement with the teacher.

These notions are surprisingly closely tied. Methods like Maximum
Margin Planning that ensure successful agnostic imitation also can
provide guarantees with respect to the teacher’s reward function (if
it exists!).[Syed and Schapire, 2007] Conversely, while methods like
the Maximum (Causal) Entropy approach of [Ziebart et al., 2008a] are
also designed to achieve the same reward as a teacher, they can also
be understood in a dual formulation as maximizing the likelihood
of the teacher’s plans under a robust statistical model of the agent’s
behavior. [Ziebart et al., 2010, 2013] Moreover, some methods, like
that of [Ziebart et al., 2010], have yet another interpretation in terms
of optimal control perturbed by certain shocks that are not visible to
the learner. [Rust, 1994]

Figure 10: (Left) LittleDog platform
crossing a terrain. (Right) Planning sys-
tem that relies on a learning approach
to cost function generation. Each color
represents a different foot and arrows
indicate the parent/child relationship
between footsteps under consideration.
[Zucker et al., 2011]

IOC in other Domains The notion of learning such deliberative strate-
gies by tuning the cost function of a planner isn’t unique to out-
door navigation– it arises anywhere long horizon plans are needed
and relatively complicated features exist to describe the state space.
[Ratliff et al., 2006b, Zucker et al., 2011] developed a technique for
learning costs (and a hierarchy of heuristics) by demonstration (see
Figure 1) for a rough terrain legged locomotion planner. In essence,
quasi-static locomotion is treated as discrete planning problem of
carefully arranging footfalls. A complex cost function that takes into
account the terrain at each individual foot as well as features of the
entire robot pose that are correlated with good foot placements (for
instance, the size of the polygon of support of the robot [Zucker
et al., 2011]) was learned from expert demonstration. Multiple re-
search groups have since embraced similar techniques [Kalakrishnan
et al., 2011, Kolter et al., 2007].

Purposeful Prediction. Often, behavior demonstrated is only approx-
imately optimal or may appear to have some non-determinism in its
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decisions. This can be understood in two ways: people are not in fact
“optimal” in their decision-making for any reasonable definition of
that word, and even more so, the world those people inhabit is not
the simple Markov Decision Process we use as our model in Inverse
Optimal Control techniques. 16 Recent IOC learning techniques man- 16 I.e., the map is not the terrain.

age such uncertainty and moreover can make probabilistic predic-
tions of what people are likely to do even in such imperfect models.

The ability to imitate a person’s imperfect but deliberative behav-
ior implies the ability to predict it. In Figure 11 we see examples of
Activity Forecasting: predicting people’s likely trajectories in novel
scenes via computer vision and inverse optimal control by learning
what they are approximately optimizing in their decision making.
[Kitani et al., 2012]

For instance, consider the problem of predicting the likely routes
that a driver might take to travel from home to a store. We can con-
sider a graph that describes the road network with nodes corre-
sponding to road segments and edges between road segments that
connect. Each road segment is annotated with a rich set of features
x (dozens or hundreds) that describe it [Ziebart et al., 2008b] – such
as expected travel times at the speed limit, the grade of the road, the
toll cost of that segment, the number of lanes, whether a church is
located along the road, or the presence of a guarded left turn.

The approach of [Ziebart et al., 2008a] efficiently learns a function
c(x) that linearly combines such features to best fit a distribution
over trajectories ψ taken by the driver according to the maximum
entropy model p(ψ) ∝ exp(−V(ψ)), where V is the total cost of the
trajectory, ∑x∈ψ c(x). When these models are combined with a prior
distribution over potential destinations, they learn both a driver’s
implicit preferences (for example, going out of the way to avoid both
unguarded left turns and expensive tolls) and provide a estimate
of a drivers destination and likely future routes after beginning a
trip. The use of the maximum entropy formulation ensures a strong
guarantee on the predictions– no other approach to forecasting an
agent’s actions that uses the same information about features [Ziebart
et al., 2013] can ensure smaller predictive loss.

This approach establishes the deep connection between proba-
bility theory, and particularly the Maximum Entropy Method, and
inverse optimal control, where previously, these were understood as
disparate techniques for modeling decision-making. [Ziebart et al.,
2008a] This thread of work culminated in a new principle for the sta-
tistical prediction of interacting systems (e.g. a driver and the world,
multiple agents playing a dynamic game) [Ziebart et al., 2010, 2013].
17

17 Such models can be understood as
a natural generalization of Conditional
Random Fields. They generalize the
common supervised learning models by
considering two interacting stochastic
processes (both decision maker and
the environment can be stochastic pro-
cesses, with the environment assumed
to be known) and arbitrary (and po-
tentially infinite) length sequences of
decisions. [Ziebart et al., 2010, 2013].

Similar techniques can be applied to predict where people are
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Figure 11: (Left) Automatic semantic
classification of a scene via machine
learning[Munoz et al., 2010, Miksik
et al., 2013]. (Right) Activity forecasting
combines semantic perception tech-
niques to identify the actors and object
types in a scene with the probabilistic
formulation of inverse optimal control
to predict an actor’s future destinations
and likely trajectories based on partial
trajectories. Each image depicts the pre-
dicted distribution of future states for a
pedestrian. The absence of color implies
very low probability, blue implies low
probability, and yellow to red higher.
Only a few potential goals are shown,
and only with a single observation (pre-
dictions improve as more of the path
is seen), to simplify the figure. [Kitani
et al., 2012, Ziebart et al., 2013, 2008a]

likely to walk in a complex visual scene. For instance, such meth-
ods could recognize cars and sidewalks in a scene and reason that
a person will climb over a car if strictly necessary to reach a goal,
but will preferentially take advantage of a sidewalk where available.
[Kitani et al., 2012] Moreover, such techniques have been applied to
aid robot navigation and predict pedestrian behavior. [Ziebart et al.,
2009, Kretzschmar et al., 2014]

Work by [Baker et al., 2009] demonstrates people reason about oth-
ers as deliberative agents as well. This inverse planning framework
elegantly captures aspects of the human “Theory of Mind.” Work
in operations research and econometrics, particularly by Rust [Rust,
1992, 1994], derives predictive distributions by developing a frame-
work for learning cost functions and predictive stochastic policies for
agents acting according to a Markov Decision Process (MDP). Intrigu-
ingly, the same policy structure and dynamic programming algo-
rithms derived from a maximum entropy formulation are developed
from considering an economist with only partial access to the pre-
diction problem and including “shocks” in a model of what would
otherwise be optimal behavior. These close connections between op-
erations research, control theory and machine learning deserve much
deeper investigation.

Structured Prediction as Imitation Learning

At first blush, it seems counter-productive to phrase a supervised
learning problem as one of imitation learning. Isn’t the point of this
article that imitation learning is a harder problem then that of super-
vised learning? However, the relationship between the two is more
subtle than this simple picture suggests. Within supervised learning,
we often consider problems of structured prediction where the goal is
to make a set of inter-related predictions – for instance, to semanti-
cally label all of the pixels within an image (e.g., Figure 11) or to turn
a sentence into a parse tree. [Daumé III et al., 2009] suggests that a
natural way to think about structured prediction is to consider it as



an invitation to imitation 19

predicting a sequence of decisions – e.g. what to label a particular
pixel given current guesses of labels – and moreover that the expert
we are imitating is simply the ground truth. 18 18 Hal Daume at a NIPS workshop first

clearly expressed to me the notion that
we should often think of supervised
learning problems as being imitation
learning problems in disguise. This
viewpoint has certainly been addressed
by others – John Langford has par-
ticularly championed the notion that
complex prediction problems should
be thought of in terms of reductions to
simpler problems.

From this viewpoint, structured prediction problems are merely
degenerate versions of imitation learning problems, where the
teacher can be specified algorithmically based on training data and
the dynamics of the environment are particularly simple. When
viewed through this lens, structured prediction problems suffer the
same difficulties as problems of imitation learning. Predictions of
some random variables (e.g., pixel classes) influence future predic-
tions of other pixels and a naive training of such an architecture leads
to disastrous compounding of errors.

For instance, consider the inference machine approach of [Munoz
et al., 2010, Ross et al., 2011b]. The central idea is to consider labeling
an image or point cloud sequentially in a pattern mimicking that of
highly effective graphical model inference algorithms like mean-field
or belief-propagation. We iteratively pass through each pixel and label
it using a combination of (a) features that describe that particular vi-
sual element (e.g. texture, color) as well as (b) the currently predicted
labels of visual elements that are nearby. The use of such nearby ele-
ments for predictions enables effective contextual reasoning. It’s eas-
ier to distinguish a tree trunk from a telephone pole if we know that
the material located above it is vegetation. Such contextual reasoning
has traditionally been approached through the lens of probabilistic
graphical models. We first learn a templated parameterized prob-
abilistic model, then use approximate inference techniques to infer
random variables in that model. The imitation learning approach
makes the inference procedure itself the model. 19 19 It is natural to view the inference

machines in the language of deep
modular neural networks [LeCun et al.,
1998, Bengio, 2009] – an inference
machine is a very deep set of repeated
predictions about a particular visual
element or other random variable.
An alternative to the iterative training
procedures espoused here includes a
direct backpropagation of errors of final
predictions made about such nodes.
Interestingly, however, such results limit
our prediction algorithms (no random
forests!); worse, backpropagation gets
stuck in local optima and overfits
when trained from a good optima.
Investigating when backpropagation
can effectively tune the parameters
of an inference machine remains an
important subject for research.

Such techniques— and more generally, applying methods like
DAGGer to structured prediction– have been demonstrated to pro-
vide state-of-the-art predictive performance and speed of inference
on a wide range of structured prediction tasks. These include exam-
ples from predicting semantic labels for images [Munoz et al., 2010],
identifying human poses in images and video [Ramakrishna et al.,
2014], summarizing documents with the SCP algorithm [Ross et al.,
2013c], and a broad range of Natural Language Processing Tasks
[Daumé III et al., 2009, He et al., 2012]. 20

20 Videos of such inference approaches
approaches can be found at the Infer-
ence Machine Website.

What’s Next?

Only in the past decade has imitation learning come into its own
as a problem distinct – and distinctly important – from the classi-
cal ones of reinforcement and supervised learning. The structure of
the problem gives us far more purchase then the general reinforce-
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ment learning (RL) problem. But it also acknowledges that learning
may actually affect the world and that the classic assumptions of su-
pervised learning will lead to poor performance and compounding
errors.

Apprenticeship: From Imitation to Reinforcement

An important next step is moving from pure imitation to appren-
ticeship21, which leverages user demonstration but optimizes perfor- 21 I’m borrowing this phrase from

Pieter Abbeel, who uses it to refer to
systems that combine imitation and
reinforcement learning.

mance on an alternate metric. Many examples in the literature con-
sider where it can have significant benefits. For instance, [Nechyba
and Bagnell, 1999] demonstrates a learned speed control for a sim-
ulated driving task that is improved by an RL gradient descent pro-
cedure that ensures good performance while attempting to stay as
close as possible to demonstration. Similarly, the works of [Atkeson
and Schaal, 1997], [Kober and Peters, 2010] and [Coates et al., 2009]
use exactly same kind of benefits to achieve impressive performance.
Such approaches are even more important when the learning cannot
be interactive– for instance, when learning by watching a video.

Interestingly, theoretical results suggest an enormous practical
benefit for learning from an expert demonstrator – but perhaps not
in the way typically considered. The theories of Policy Search by
Dynamic Programming [Bagnell et al., 2003], Conservative Policy It-
eration [Kakade and Langford, 2002], and No-Regret Policy Iteration
[Ross and Bagnell, 2014] show that the key to making reinforcement
learning easier is to identify the distribution of states that a good
policy spends time in (the so-called baseline measure of [Bagnell et al.,
2003]). Access to such a distribution makes the problem of a learn-
ing an optimal memory-less policy in a Partially Observed MDP a
polynomial-time problem. It also effectively makes the sample com-
plexity of learning into a policy with generative model access to a
large MDP polynomial in the horizon of the problem.

Such results, however, show no significant benefit for observing
what actions an expert demonstrator might choose – the benefit
of this seems secondary to the benefit of knowing what states are
important to focus on. Understanding practically and theoretically
how we can get the best of imitation and reinforcement learning will
be a major area of future research.

Extending Inverse Optimal Control for Imitation Learning.

Much recent work has focused on models for which the optimal
control problem itself can only be approximately solved. 22

22 [Ziebart et al., 2012] and [Dragan
and Srinivasa, 2012] and [Levine and
Koltun, 2012] consider locally quadratic
approximation of the maximum en-
tropy inference problem. [Huang et al.,
2015] has developed a variant of the
maximum entropy IOC that relies on a
combination of function approximation
of the log-partition function and sam-
pling to estimate the gradient. [Ratliff
et al., 2009a] blends the advantages of
IOC-based methods with methods that
directly learn to predict actions.

There is increasing interest in models that are effective at predict-
ing multiple agents and strategic interaction. [Waugh et al., 2011,
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Kretzschmar et al., 2014] Such methods and combinations of methods
seem likely to dramatically increase the applicability of this rich class
of predictive models and procedures for inferring reward functions.

Putting it together

Perhaps surprisingly, existing techniques rarely consider both as-
pects of imitation learning I have discussed in this paper: they tend
to focus either on the problem of compounding errors or the need for
learning deliberative strategies. As these problems are largely orthog-
onal, I expect future techniques for imitation learning will address
both issues simultaneously.
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